Upgrade блока питания. Лабораторный источник питания из блока ATX компьютера Модернизация блока питания компьютера

Стабильность и надежность любой системы зависит ее составляющих. Если производительность компьютерной техники характеризуется процессором, оперативной памятью, материнской платой и чем больше гигагерц и ядер, гигабайт, тем лучше. Другое дело блок питания . Есть дешевые за 15 $, а есть и за 60 $. И там, и там одинаковые напряжения, та же мощность на этикетке, тогда зачем платить больше?

В конечном итоге покупается блок питания с корпусом за 25-35 $.

Себестоимость такого блока питания, без учета корпуса, но с учетом доставки из Китая, растаможки и перепродажи 2–3 посредниками, составляет от 5 до 10 $. В результате компьютер начинает зависать, перезагружаться без видимых причин. И ваш многоядерный процессор и гигабайты оперативной памяти превращаются в кучу бесполезного железа. Стабильность работы компьютерной сети также зависит от качества блоков питания компьютеров или сервера, т.е ее составляющих. Например компьютер на котором установлена база 1° C Бухгалтерии и при работе с блоком бесперебойного питания, и в момент переключения его на внутреннюю батарею, перезагружаться. В итоге все клиентские компьютеры вылетают из базы и приходится делать работу заново. Но самое страшное, если в результате выхода из строя, такой блок питания спалит еще пору модулей, например, жесткий диск. А восстановление информации с жестких дисков, сожженных блоком питания, нередко превышает стоимость самого жесткого диска в 3–5 раз. Объясняется все это очень просто – так, как качество блоков питания сложно сходу проконтролировать, особенно если они продаются внутри корпусов, то это повод для китайского производителя сэкономить за счет качества и надежности – за наш счет.

Делается все чрезвычайно просто – наклейкой новых этикеток с большей заявленной мощностью на старые блоки питания . Мощность на наклейках из года в год все больше и больше, а начинка блоков питания все та же. Этим грешат Codegen, JNC, Sunny, Ultra, и другие «no name» (Рисунок 1).

Рисунок 1 - Типичный китайский дешевый блок питания ATX. Доработка целесообразна.

Вот например взяли новый блок питания Codegen 300W нагрузили на 200 Вт. Через 4 минуты работы задымились его провода, ведущие к разъёму ATX. При этом наблюдался разбаланс выходных напряжений по источнику:

5В – 4, 82В и по +12В – 13,2В.

Чем конструктивно отличается хороший блок питания от китайских можно определить даже не вскрывая крышку. Как правило, можно заметить разницу в весе и толщине проводов. За редким исключением хороший блок питания тяжелее . Но главные отличия внутри.

На плате дорогого блока питания :

Все детали на месте;

Достаточно плотный монтаж;

Основной трансформатор больших размеров.

Плата дешевого блока питания :

Кажется полупустым (пустуют площадки для радиодеталей хотя они предусмотрены);

Перемычки вместо дросселей вторичных фильтров;

Часть фильтрующих конденсаторов отсутствует;

Сетевой фильтр отсутствует;

Трансформатор малых размеров;

Вторичные выпрямители отсутствуют, либо выполнены на дискретных диодах;

Корректор фактор мощности не предусмотрен.

Сетевой фильтр


В течении работы импульсный блок питания наводит высокочастотные пульсации как по входной (питающей) линии, так и по каждой из выходных. Так как компьютерная электроника весьма чувствительна к этим пульсациям, поэтому даже самый дешевый блок питания использует пусть упрощенные, минимально достаточные, но все же фильтры выходных напряжений. На сетевых фильтрах обычно экономят, что является причиной выброса в осветительную сеть и в эфир достаточно мощных радиочастотных помех.

На что это влияет и к чему это приводит?

Первым делом это сбои в работе компьютерных сетей и коммуникаций. Появление дополнительных шумов и помех на радиоприемниках и телевизорах. Это может вызывать сбои в работе другой высокоточной измерительной аппаратуры, находящейся рядом, или включенной в ту же фазу сети.

С точки зрения надежности н аилучший вариант – приобретение изначально качественного блока питания . Или хорошие результаты можно получить доработкой уже имеющихся дешевых блоков питания. В основном печатные платы спроектировали по критерию максимальной универсальности, т. е. в зависимости от количества установленных комплектующих можно было бы варьировать качеством и, соответственно, ценой. Другими словами, если установить те детали, на которых производитель сэкономил, и еще кое – что поменяем – получим неплохой блок средней ценовой категории. Конечно, это не сравнить с дорогими экземплярами, где топология печатных плат и схемотехника изначально рассчитывалась для получения хорошего качества, как и все детали. Но для среднестатистического домашнего компьютера вполне приемлемый вариант.

Выбор блока питания для доработки


Критерий отбора – величина самого большого ферритового трансформатора. Если он имеет бирку, на которой вначале идут цифры 33 или больше и имеет размеры 3×3×3 см или больше. В противном случае приемлемого баланса напряжений +5В и +12В при изменении нагрузки добиться не удастся, и кроме того трансформатор будет сильно греется, что значительно снизит надежность.


Высоковольтная часть блока питания


Заменяем 2 электролитических конденсатора по сетевому напряжению на максимально возможные, способные поместиться на посадочные места (Рисунок 2). Обычно в дешевых блоках их номиналы 200 µF х 200 V, 220 µF x 200 V или в лучшем случае 330 µF x 200 V. Меняем на 470 µF x 200 V или лучше на 680 µF x 200 V. Эти электролиты, как и любые другие в компьютерных блоках питания, ставить только из серии 105 градусов!


Низковольтная часть блока питания.

Установка конденсаторов и дросселей вторичных цепей

Дросселя можно взять из разборки на радиорынке или намотать на соответствующем куске феррита или кольце 10–15 витков провода в эмалевой изоляции диаметром 1,0–2,0 мм (чем больше, тем лучше). Конденсаторы подойдут на 16 V, Low ESR типа, 105 градусов серия (Рисунок 3). Емкость следует выбирать максимальной, чтобы конденсатор смог поместиться на штатное место (обычно 2200 µF).


Меняем выпрямительные диоды и модули вторичных выпрямителей на более мощные. В первую очередь это касается выпрямительных модулей на 12 V. Это обьясняется тем, что в последние 5–7 лет энергопотребление компьютеров, в частности материнских плат с процессором, возрастало в большей степени по шине + 12 V.


    Рисунок 4 - Выпрямительные модули для вторичных источников: 1 - наиболее предпочтительные модули. Устанавливаются в дорогих блоках питания; 2 - дешевые и менее надежные; 3 - 2 дискретных диода - самый экономный и ненадежный вариант, подлежащий замене.

Устанавливаем дроссель сетевого фильтра (место для его установки см. рисунок 2).

Рис. 5 Блок питания ATX с доработанными радиаторами охлаждения.

Радиатор

Если радиаторы блока питания выполнены в виде пластин с прорезанными лепестками, разгибаем эти лепестки в разные стороны, чтобы максимально повысить эффективность радиаторов.

Таким образом, вложив в модернизацию дешевого блока питания ATX 6-10$, можно получить неплохой БП для домашнего компьютера.

Блоки питания боятся нагрева, который приводит к выходу из строя полупроводников и электролитических конденсаторов. Усугубляется это тем, что воздух проходит через компьютерный блок питания уже предварительно нагретый элементами системного блока (процессором, северным мостом и видеокартой). Рекомендую вовремя чистить блок питания от пыли изнутри и за одно проверять, нет ли вздутых электролитов внутри (Рисунок 6).

Рисунок 6 - Вышедшие из строя электролитические конденсаторы - вздувшиеся верхушки корпусов.

В случае обнаружения вздутых электролитов , меняем на новые.

Если у вас дома есть старый блок питания от компьютера (ATX), то не стоит его выбрасывать. Ведь из него можно сделать отличный блок питания для домашних или лабораторных целей. Доработка потребуется минимальная и в конце вы получите почти универсальный источник питания с рядом фиксированных напряжений.

Компьютерные блоки питания обладают большой нагрузочной способностью, высокой стабилизацией и защитой от короткого замыкания.


Я взял вот такой блок. У всех есть такая табличка с рядом выходных напряжений и максимальным током нагрузки. Основные напряжения для постоянной работы 3,3 В; 5 В; 12 В. Есть ещё выходы, которые могут быть использованы на небольшой ток, это минус 5 В и минус 12 В. Так же можно получить разность напряжений: к примеру, если подключится в к «+5» и «+12», то вы получите напряжение 7 В. Если подключиться к «+3,3» и «+5», то получите 1,7 В. И так далее… Так что линейка напряжений намного больше, чем может показаться с разу.

Распиновка выходов блока питания компьютера


Цветовой стандарт, в принципе, един. И эта схема цветовых подключений на 99 процентов подойдет и вам. Может что-то добавиться или удалиться, но конечно все не критично.

Переделка началась

Что нам понадобиться?
  • - Клеммы винтовые.
  • - Резисторы мощностью 10 Вт и сопротивлением 10 Ом (можно попробовать 20 Ом). Мы будем использовать составные из двух пятиватных резисторов.
  • - Трубка термоусадочная.
  • - Пара светодиодов с гасящими резисторами на 330 Ом.
  • - Переключатели. Один для сети, второй для управления

Схема доработки блока питания компьютера


Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем

Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.


Вставляем клеммы и затягиваем.


Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.


Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.
Также сверлим отверстия по тумблер и светодиоды.


Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.


Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.


Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.


Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.

Смотрите видео изготовления лабораторного блока своими руками


Мне нужен был легкий блок питания, для разных дел (экспедиций, питания разных КВ и УКВ трансиверов или для того чтобы переезжая на другую квартиру не таскать с собой трансформаторный БП) . Прочитав доступную информацию в сети, о переделке компьютерных БП - понял, что разбираться придется самому. Все что нашел, было описано както сумбурно и не совсем понятно (для меня) . Здесь я расскажу, по порядку, как переделывал несколько разных блоков. Различия будут описаны отдельно. Итак, я нашел несколько БП от старых PC386 мощностью 200W (во всяком случае, так было на крышке написано) . Обычно на корпусах таких БП пишут примерно следующее: +5V/20A , -5V/500mA , +12V/8A , -12V/500mA

Токи указанные по шинам +5 и +12В - импульсные. Постоянно нагружать такими токами БП нельзя, перегреются и треснут высоковольтные транзисторы. Отнимем от максимального импульсного тока 25% и получим ток который БП может держать постоянно, в данном случае это 10А и до 14-16А кратковременно (не более 20сек) . Вообще-то тут нужно уточнить, что 200W БП бывают разные, их тех что мне попадались не все могли держать 20А даже кратковременно! Многие тянули только 15А, а некоторые до 10А. Имейте это в виду!

Хочу заметить что конкретная модель БП роли не играет, так как все они сделаны практически по одной схеме с небольшими вариациями. Наиболее критичным моментом, является наличие микросхемы DBL494 или ее аналогов. Мне попадались БП с одной микросхемой 494 и с двумя микросхемами 7500 и 339. Всё остальное, не имеет большого значения. Если у вас есть возможность выбрать БП из нескольких, в первую очередь, обратите внимание на размер импульсного трансформатора (чем больше, тем лучше) и наличие сетевого фильтра. Хорошо, когда сетевой фильтр уже распаян, иначе его придётся самому распаять, чтобы помехи снизить. Это несложно, намотайте 10 витков на ферритовом кольце и поставьте два конденсатора, места для этих деталей уже предусмотрены на плате.

ПЕРВООЧЕРЕДНЫЕ МОДИФИКАЦИИ

Для начала, сделаем несколько простых вещей, после которых вы получите хорошо работающий блок питания с выходным напряжением 13.8В, постоянным током до 4 - 8А и кратковременным до 12А. Вы убедитесь что БП работает и определитесь, нужно ли продолжать модификации.

1. Разбираем блок питания и вытаскиваем плату из корпуса и тщательно чистим её, щеткой и пылесосом. Пыли быть не должно. После этого, выпаиваем все пучки проводов идущие к шинам +12, -12, +5 и -5В.

2. Вам нужно найти (на плате) микросхему DBL494 (в других платах стоит 7500, это аналог) , переключить приоритет защиты c шины +5В на +12В и установить нужное нам напряжение (13 - 14В) .
От 1-ой ноги микросхемы DBL494 отходит два резистора (иногда больше, но это не принципиально) , один идёт на корпус, другой к шине +5В. Он нам и нужен, аккуратно отпаиваем одну из его ножек (разрываем соединение) .

3. Теперь, между шиной +12В и первой ножной микросхемы DBL494 припаиваем резистор 18 - 33ком. Можно поставить подстроечный, установить напряжение +14В и потом заменить его постоянным. Я рекомендую установить не 13.8В, а именно 14.0В, потому что большинство фирменной КВ-УКВ аппаратуры работает лучше при этом напряжении.


НАСТРОЙКА И РЕГУЛИРОВКА

1. Пора включить наш БП, чтобы проверить, всё ли мы сделали правильно. Вентилятор можно не подключать и саму плату в корпус не вставлять. Включаем БП, без нагрузки, к шине +12В подключаем вольтметр и смотрим какое там напряжение. Подстроечным резистором, который стоит между первой ногой микросхемы DBL494 и шиной +12В., устанавливаем напряжение от 13.9 до +14.0В.

2. Теперь проверьте напряжение между первой и седьмой ногами микросхемы DBL494, оно должно быть не меньше 2В и не больше 3В. Если это не так, подберите сопротивление резистора между первой ногой и корпусом и первой ногой и шиной +12В. Обратите особое внимание на этот пункт, это ключевой момент. При напряжении выше или ниже указанного, блок питания будет работать хуже, нестабильно, держать меньшую нагрузку.

3. Закоротите тонким проводом шину +12В на корпус, напряжение должно пропасть, чтобы оно восстановилось - выключите БП на пару минут (нужно чтобы ёмкости разрядились) и включите снова. Напряжение появилось? Хорошо! Как видим, защита работает. Что, не сработала?! Тогда выкидываем этот БП, нам он не подходит и берем другой...хи.

Итак, первый этап можно считать завершённым. Вставьте плату в корпус, выведите клеммы для подключения радиостанции. Блоком питания можно пользоваться! Подключите трансивер, но давать нагрузку более 12А пока нельзя! Автомобильная УКВ станция, будет работать на полной мощности (50Вт) , а в КВ трансивере придётся установить 40-60% мощности. Что будет если вы нагрузите БП большим током? Ничего страшного, обычно срабатывает защита и пропадает выходное напряжение. Если защита не сработает, перегреются и лопаются высоковольтные транзисторы. В этом случае напряжение просто пропадет и последствий для аппаратуры не будет. После их замены, БП снова работоспособен!

1. Переворачиваем вентилятор наоборот, дуть он должен внутрь корпуса. Под два винта вентилятора, подкладываем шайбы чтобы его немного развернуть, а то дует только на высоковольтные транзисторы, это неправильно, нужно чтобы поток воздуха был направлен и на диодные сборки и на ферритовое кольцо.

Перед этим, вентилятор желательно смазать. Если он сильно шумит поставьте последовательно с ним резистор 60 - 150ом 2Вт. или сделайте регулятор вращения в зависимости от нагрева радиаторов, но об этом чуть ниже.

2. Выведите две клеммы из БП для подключения трансивера. От шины 12В до клеммы проведите 5 проводов из того пучка который вы отпаяли вначале. Между клеммами поставьте неполярный конденсатор на 1мкф и светодиод с резистором. Минусовой провод, также подведите к клемме пятью проводами.

В некоторых БП, параллельно клеммам к которым подключается трансивер, поставьте резистор сопротивлением 300 - 560ом. Это нагрузка, для того чтобы не срабатывала защита. Выходная цепь должна выглядеть примерно так, как показано на схеме.

3. Умощняем шину +12В и избавляемся от лишнего хлама. Вместо диодной сборки или двух диодов (которые часто ставят вместо неё) , ставим сборку 40CPQ060, 30CPQ045 или 30CTQ060, любые другие варианты ухудшат КПД. Рядом, на этом радиаторе, стоит сборка 5В, выпаиваем её и выбрасываем.

Под нагрузкой, наиболее сильно нагреваются следующие детали: два радиатора, импульсный трансформатор, дроссель на ферритовом кольце, дроссель на ферритовом стержне. Теперь наша задача, уменьшить теплоотдачу и увеличить максимальный ток нагрузки. Как я говорил ранее, он может доходить до 16А (для БП мощностью 200Вт) .

4. Выпаяйте дроссель на ферритовом стержне из шины +5В и поставьте его на шину +12В, стоящий там ранее дроссель (он более высокий и намотан тонким проводом) выпаяйте и выбросите. Теперь дроссель греться практически не будет или будет, но не так сильно. На некоторых платах дросселей просто нет, можно обойтись и без него, но желательно чтобы он был для лучшей фильтрации возможных помех.

5. На большом ферритовом кольце намотан дроссель для фильтрации импульсных помех. Шина +12В на нем намотана более тонким проводом, а шина +5В самым толстым. Выпаяйте аккуратно это кольцо и поменяйте местами обмотки для шин +12В и +5В (или включите все обмотки параллельно) . Теперь шина +12В проходит через этот дроссель, самым толстым проводом. В результате, этот дроссель будет нагреваться значительно меньше.

6. В БП установлены два радиатора, один для мощных высоковольтных транзисторов, другой, для диодных сборок на +5 и +12В. Мне попадались несколько разновидностей радиаторов. Если, в вашем БП, размеры обоих радиаторов 55x53x2мм и в верхней части у них есть ребра (как на фотографии) - вы можете рассчитывать на 15А. Когда радиаторы имеют меньший размер - не рекомендуется нагружать БП током более 10А. Когда радиаторы более толстые и имеют в верхней части дополнительную площадку - вам повезло, это наилучший вариант, можно получить 20А в течении минуты. Если радиаторы маленькие, для улучшения теплоотдачи, можно закрепить на них небольшую пластину из дюраля или половинку от радиатора старого процессора. Обратите внимание, хорошо ли прикручены высоковольтные транзисторы к радиатору, иногда они болтаются.

7. Выпаиваем электролитические конденсаторы на шине +12В, на их место ставим 4700x25В. Конденсаторы на шине +5В желательно выпаять, просто для того, чтобы места свободного больше стало и воздух от вентилятора лучше детали обдувал.

8. На плате вы видите два высоковольтных электролита, обычно это 220x200В. Замените их на два 680x350В, в крайнем случае, соедините параллельно два по 220+220=440мКф. Это важно и дело тут не только в фильтрации, импульсные помехи будут ослаблены и возрастёт устойчивость к максимальным нагрузкам. Результат можно посмотреть осциллографом. Во общем, надо делать обязательно!

9. Желательно чтобы вентилятор менял скорость в зависимости от нагрева БП и не крутился когда нет нагрузки. Это продлит жизнь вентилятору и уменьшит шума. Предлагаю две простые и надежные схемы. Если у вас есть терморезистор, смотрите на схему посередине, подстроечным резистором устанавливаем температуру срабатывания терморезистора примерно +40С. Транзистор, нужно ставить именно KT503 с максимальным усилением по току (это важно), другие типы транзисторов работают хуже. Терморезистор любой типа NTC, это означает, что при нагреве его сопротивление должно уменьшаться. Можно использовать терморезистор с другим номиналом. Подстроечный резистор должен быть многооборотным, так легче и точнее настроить температуру срабатывания вентилятора. Плату со схемой прикручиваем к свободному ушку вентилятора. Терморезистор крепим к дросселю на ферритовом кольце, он нагревается быстрее и сильнее остальных деталей. Можно приклеить терморезистор к диодной сборке на 12В. Важно, чтобы ни один из выводов терморезистора не коротил на радиатор!!! В некоторых БП, стоят вентиляторы с большим током потребления, в этом случае после КТ503 нужно поставить КТ815.

Если терморезистора у вас нет, сделайте вторую схему, смотрите справа, в ней в качестве термоэлемента используются два диода Д9. Прозрачными колбами приклейте их к радиатору на котором установлена диодная сборка. В зависимости от применяемых транзисторов, иногда нужно подобрать резистор 75 ком. Когда БП работает без нагрузки, вентилятор не должен крутиться. Все просто и надежно!

ЗАКЛЮЧЕНИЕ

От компьютерного блока питания мощностью 200W, реально получить 10 - 12А (если в БП будут стоять большие трансформаторы и радиаторы) при постоянной нагрузке и 16 - 18А кратковременно при выходном напряжении 14.0В. Это значит, что вы можете спокойно работать в режимах SSB и CW на полной мощности (100Вт) трансивера. В режимах SSTV, RTTY, MT63, MFSK и PSK, придётся уменьшить мощность передатчика до 30-70Вт., в зависимости от продолжительности работы на передачу.

Вес переделанного БП, примерно 550гр. Его удобно брать с собой в радиоэкспедиции и различные выезды.

При написании этой статьи и во время экспериментов, было испорчено три БП (как известно, опыт приходит не сразу) и удачно переделано пять БП.

Большой плюс компьютерного БП, в том, что он стабильно работает при изменении сетевого напряжения от 180 до 250В. Некоторые экземпляры работают и при большем разбросе напряжений.

Смотрите фотографии удачно переделанных импульсных блоков питания:

Игорь Лаврушов
г.Кисловодск

Многие сталкивались с проблемой малой выходной мощности БП компьютера. Чаще всего это выражается в самопроизвольных перезагрузках, ярко выраженной зависимостью от напряжения сети и т.п. Однако, как известно, современные импульсные БП очень надежны. Так почему же происходят все эти досадные мелочи? Давайте заглянем в самый простой (дешевый) и, как следствие, самый распространенный БП.

Фото 1. «Внутренности» обычного БП

На фото №1 видно, что основное пространство занято электролитическими конденсаторами всех емкостей и номиналов, трансформаторами и двумя радиаторами для диодных сборок и стабилизаторов. Итак, чаще всего все проблемы происходят из-за того, что БП перегревается. Несмотря на то, что вентилятор в поте лица вытягивает нагретый воздух из корпуса ПК через отверстия в блоке питания. И тем самым поднимает и без того не маленькую температуру внутри БП, достигающую порой 60-65°С. 90% тепла выделяют радиаторы, а остальные 10% приходятся на катушки индуктивности, резисторы и конденсаторы.

Первое на что следует обратить внимание, это на фильтрующие конденсаторы, установленные в выпрямителе (самые большие), их стандартная емкость 150-220мкф, а напряжение около 200V. С такими параметрами, столь свойственными китайскому минимализму, эти конденсаторы у нас долго не живут, так как все они установлены буквально впритык. Использование таких конденсаторов также сказывается на выходной мощности БП. Их нужно заменить на аналогичные электролитические конденсаторы, но с более высокими параметрами по емкости и напряжению (например 470мкФ х 250V). Выбирайте по возможности, но все же чем больше, тем лучше. Конденсаторы (фото №2 ) на выходе питающих напряжений в ПК (1000\2000х25\35V) тоже лучше сменить. Меньше будет пульсаций и, как следствие, компьютер будет работать более надежно. Далее переходим к радиаторам, на которых установлены стабилизаторы и диодные сборки. Сами по себе радиаторы мало чем могут помочь рассеять ту мощность которую потребляет ПК. Ключи греются вследствие этого сильнее и сильнее.


Фото 2.

На фото №3 видны две самых распространенные формы радиаторов. Как могут эти пластиночки рассеивать заявленные в паспорте 250-300Вт, остается только удивляться. Причем ключи монтируются через изоляционную ленту без какой-либо теплопроводящей пасты.


Фото 3. Формы радиаторов

Основную роль в моей доработке играет радиатор от процессорного кулера, пылившийся на полке в результате перехода на водяное охлаждение. Радиатор крепится с внешней стороны на месте вентилятора (фото №4 ). В радиаторе просверливаются отверстия для крепления по четырем углам. Старые отверстия для вентилятора приходятся как нельзя кстати. Задача такая: выпаять, все диодные сборки и стабилизаторы и перенести их на один радиатор обдуваемый снаружи кулером.


Фото 4.

Затем следует подготовить «подошву радиатора» т.е. то место, где он ранее соприкасался с процессором. Т.к. именно туда мы будем крепить все силовые элементы БП.

Все шесть деталей как раз умещаются на радиаторе (фото №5 ). Их следует крепить через изоляционный материал, а место крепления необходимо промазать теплопроводной пастой. Особое внимание нужно уделить изоляции деталей друг от друга и от радиатора (за исключением деталей с пластмассовым корпусом). После того как деталь выпаяна с платы, ее ножки наращиваются любыми медными проводниками (фото №6 ). Длина должно быть достаточной для монтажа ее на радиаторе. И не забудьте пометить провода, дабы потом не ломать голову о назначении того или иного выводаJ. На фото видно как все это выглядит в жизни.


Фото 5.

Родные радиаторы выпаиваются, а следом выпаиваются и элементы стабилизации (на фото №6 видны провода, которые тянутся к новому «месту жительства» деталей).


Фото 6.

Провода желательно стянуть изолентой или чем-то подобным, чтобы не создавать беспорядка.


Фото 7.


Фото 8.

Вид сверху показан на фото №9 . Да, конечно, конструкция несколько увеличивает габариты компьютера, но это плата за стабильность. Компьютер стал нечувствителен к скачкам напряжения в квартире. Пропали самопроизвольные перезагрузки.


Фото 9.

В итоге при пассивном охлаждении температура радиатора не поднималась выше 55°C, а при использовании кулера составила 27-30°C под нагрузкой.

Будьте внимательны! В боке питания присутствует напряжение, опасное для жизни, поэтому знание техники безопасности и основ радиоэлектроники обязательны!

Хороший лабораторный блок питания - это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из , которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания "Codegen" схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия - даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя "дежурки", который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители "дежурки" - синей линией, а всё остальное, что необходимо будет удалить - красным цветом.

Итак всё, что помечено красным цветом - выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора - резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа - оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа - обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь - при экспериментах с режимом стабилизации тока, на форуме pro-radio , участник форума DWD привёл такую цитату, приведу её полностью:

"Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ - нормально, а меньше - нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше - ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12...13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет...
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А."

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) - перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD , то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской "цешки".
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.

Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы - с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора - увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима - в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
- Самый верхний выпрямитель - это дежурка.
- Величины переменных резисторов показаны, как 3,3 и 10 кОм - стоят такие, какие нашлись.
- Величина резистора R1 указана 270 Ом - он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
- Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
- Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа - резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя - обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной - сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём - просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать - рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и "поварить" наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) - острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 - 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на "косу" и в том же направлении, что и начинали - мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором "I".
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока - лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала "Плавно", потом когда у него заканчивается предел, начинает регулироваться "Грубо".
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;

Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.

Удачи Вам в конструировании!

Поделитесь с друзьями или сохраните для себя:

Загрузка...