Технические измерение и контроль электрических величин. Исембергенов Н.Т Методы и средства измерений и контроля электрических величин. Учебно методичный комплекс - файл n1.doc. Обработка и представление результатов измерения

Измерение и контроль тока и напряжения в условиях агропромышленного производства – наиболее распространенный вид измерений электрических величин. В зависимости от рода, частоты и формы кривой тока применяют те или иные методы и средства измерений и контроля тока и напряжения. Ток и напряжение непосредственно измеряют электромеханическими и цифровыми амперметрами и вольтметрами со стрелочными или цифровыми отсчетными устройствами. Применение метода сравнения с мерой позволяет измерять величины с меньшими погрешностями, чем непосредственно.

Измерения в цепях постоянного тока. В условиях производства и при научных исследованиях возникает необходимость в измерении и контроле в установках постоянного тока от 10 –17 до 10 6 А и напряжений от 10 –7 до 10 8 В . Для этого используют различные средства.

Малые токи и напряжения измеряют непосредственно приборами высокой чувствительности - магнитоэлектрическими гальванометрами.

Постоянные токи не более 200 мА измеряютмагнитоэлектрическими миллиамперметрами.

Непосредственное измерение и контроль напряжений (до 600 В ) в установках постоянного тока осуществляют магнитоэлектрическими вольтметрами.

Для регистрации токов и напряжений в цепях постоянного тока используют самопишущие приборы.

Измерения в цепях синусоидального тока связаны с определением среднего (средневыпрямленного), действующего (среднего квадратичного) и амплитудного (максимального) значений тока и напряжения. Поскольку все эти значения связаны между собой коэффициентами формыилии амплитуды или, можно измерив одно из них, определить другие. Для измерения средних значений применяют электронные и цифровые приборы. Для измерения действующих значений тока (до 100А ) и напряжения (до 600В ) в цепях синусоидального токапромышленной частоты применяют в основном электромагнитные приборы. Для измерения тока и напряжения в установках сповышенными частотами (например, в установках с ручным инструментом) электромагнитные приборы не используют из-за больших погрешностей измерений. Для этого применяют тепловые, электронные и цифровые приборы.Мгновенные значения токов и напряжений различной формы и частоты регистрируют с помощью самопишущих приборов и электронно-лучевых осциллографов.

В трехфазных системах токи и напряжения измеряют теми же приборами, что и в однофазных цепях. В симметричной трехфазной системе для контроля линейных токов и напряжений можно использовать один амперметр или вольтметр. В несимметричных системах для контроля линейных напряжений часто применяют один вольтметр с переключателем.

Независимо от способа и применяемого средства измерений и контроля тока и напряжения результаты измерений содержат погрешности, одна из составляющих которых обусловлена потреблением мощности измерительными приборами. Так, при включении амперметра с сопротивлением
в цепь с напряжениемU по цепи протекает ток меньший, чем до включения прибора. Если ток в цепи до включения амперметра(здесь– сопротивление цепи без прибора), а после его включения, то относительная погрешность измерения тока

Поэтому для измерения тока следует выбирать амперметр с возможно меньшим сопротивлением, а для измерения напряжения – вольтметр с возможнобольшим сопротивлением. В этом случае погрешности измерений будут минимальными.

О влиянии метрологических свойств вольтметров на оценку качества напряжения можно судить по следующему примеру. Действующими для сельских электрических сетей нормами допускаются колебания напряжения на входе потребителя до 5 % от номинального. Если для измерения напряжения в сети 22011В (с учетом колебания) использовать вольтметр класса точности 1,5 с диапазоном измерений 0...250В , то он может показать 22014,75В , что превышает нормируемое колебание на1,7%.

Изучение электроизмерительных приборов. Методы расширения пределов измерения электроизмерительных приборов.

Цели работы:

1. Ознакомиться с методами расширения пределов электроизмерительных приборов;

3. Изготовить омметр и провести измерение сопротивлений с его помощью.

Приборы:

1. Гальванометр (миллиамперметр 50-100-200мА);

2. Амперметр (1-2) А;

3. Вольтметр (15-60) В;

4. Реостат (30 Ом);

5. Магазин сопротивлений типа Р-33;

6. Источник напряжения (типа ВС-24);

7. Проволока для изготовления шунта (медь);

8. Масштабная линейка;

9. Микрометр;

10. Соединительные провода

Примечание : Технические характеристики приборов записать в рабочую тетрадь.

Введение

Электрические измерения

Средства измерений – это особые технические средства, приводимые во взаимодействие с материальным объектом. Результатом измерений является значение физической величины. Физические величины подразделяют на непрерывные (аналоговые) и дискретные (квантованные). Большинство физических величин являются аналоговыми (напряжение, сила тока, температура, длина и т.д.). квантованной величиной является, например, электрический заряд.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем.

Существуют следующие основные группы средств для измерения электрических, магнитных и неэлектрических физических величин:

Аналоговые электромеханические и электронные приборы

Цифровые измерительные приборы и аналого-цифровые преобразователи

Измерительные преобразователи электрических и неэлектрических величин в электрические сигналы

Регистрирующие приборы (самопишущие приборы, осциллографы, магнитографы и др.

Измерительные информационные системы и вычислительные комплексы и т.д.

Все приборы делятся на аналоговые измерительные приборы (например, электроизмерительный прибор с отсчетным устройством в виде стрелки, перемещающейся по шкале с делениями) и цифровые измерительные приборы (показания представляются в цифровой форме). Цифровые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы более точны, более удобны при снятии показаний и, в общем, более универсальны. В них измеряемая величина (например, напряжение) автоматически сравнивается с эталонной величиной, после ряда преобразований результат сравнения выдается на экран в виде светящегося числа. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока.

Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения величины во времени применяются региотрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые. В цифровых измерительных приборах (кроме простейших) используются электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный, вакуумный люминесцентный или жидкокристаллический индикатор (дисплей). Прибор обычно работает под управление встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме.

Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,01 до 50 с и более, погрешность составляет 0,1 – 0,003 %. Погрешность АЦП последовательного приближения несколько больше (0,4 – 0,002 %), но зато время преобразования от ~ 10мкс до ~ 1мс.

Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

По роду измеряемой величины электроизмерительные приборы делят на следующие группы: амперметры (для измерения величины тока), вольтметры (для измерения напряжения), омметры (для измерения сопротивления), ваттметры (для измерения мощности), частотомеры (для измерения частоты), фазометры (для измерения сдвига фаз в электрических цепях) и т.д.

По способу представления результатов измерений приборы и устройства можно разделить на показывающие и регистрирующие. По методу измерения средства электроизмерительной техники можно разделить на приборы непосредственной оценки и приборы сравнения (уравновешивания). По способу применения и по конструкции электроизмерительные приборы и устройства делятся на щитовые, переносные и стационарные. По точности измерения приборы делятся на измерительные (в которых нормируются погрешности); индикаторы, или внеклассные приборы (погрешность измерений больше предусматриваемой соответствующими стандартами), и указатели (погрешность не нормируется).

По принципу действия или физическому явлению можно выделить следующие укрупненные группы: электромеханические, электронные, термоэлектрические и электрохимические. В зависимости от способа защиты схемы прибора от воздействия внешних условий корпуса приборов делятся на обыкновенные, водо-, газо-, и пылезащищенные, герметические, взрывобезопасные.

Измерение электрических величин

Гальванометр – электроизмерительный прибор с неградуированной шкалой, имеющий высокую чувствительность к току или напряжению и предназначенный для измерения весьма малых токов, напряжений, величины заряда. Используя комбинацию гальванометра с различными шунтами и добавочными сопротивлениями, можно изготовить приборы для измерения различных электрических величин (амперметры, вольтметры и т.д.)

Измерение токов

Для непосредственного измерения тока в цепи применятся амперметры, которые включаются в цепь так, чтобы через них проходил весь измеряемый ток, т.е. последовательно тем участкам цепи, где необходимо измерить ток. Амперметр должен иметь малое сопротивление, чтобы его включение в цепь не могло заметно изменить величину тока в цепи. Существуют четыре схемы включения амперметра в цепь. Первые две (рис. 1а, 16) предназначены для измерения постоянного тока, а две вторые схемы

(1в,1г) – для измерения переменного тока.

Вторая и четвертая схемы (рис 16,1 г) применяются в тех случаях, когда номинальные данные амперметра меньше измеряемой величины тока. В этом случае при определении истинного значения тока нужно учитывать коэффициент преобразования.

Для расширения пределов измерения амперметра параллельно ему необходимо присоединить проводник, называемый шунтом. Признаком параллельного соединения является разветвление тока. В данном случае электрический ток I 0 разветвляется на два тока I 0 и I m (рис.2), где R r – сопротивление гальванометра (исходного амперметра), I r – ток, протекающий через гальванометр (исходный амперметр), R m – сопротивление шунта, I ш – ток, протекающий через шунт, I 0 - ток, измеряемый амперметром с шунтом («новый» прибор).

Из закона сохранения зарядов следует, что:

I a = I m +I a (1)

Напряжение при параллельном соединении в ветвях одинаково, поэтому можно записать:

U= I m R m =I a R a

Откуда следует, что

При параллельном соединении проводников токи в отдельных проводниках обратно пропорциональны их сопротивлениям, т.е. чем меньше сопротивление шунта по сравнению с сопротивлением приборов, тем большая часть измеряемого тока отводится через шунт.

Коэффициентом шунта называется число, показывающее, во сколько раз предельный ток, измеряемый амперметром с шунтом, больше предельного тока, измеряемого гальванометром (исходной амперметром) без шунта:

Разделив обе части равенства (1) на I r , получим:

Но, так как

Равенство (4) можно записать так:

n = R r / R ш +1

Отсюда сопротивление шунта равно:

Таким образом, чтобы измерить амперметром в n раз больший ток, необходимо взять сопротивление шунта в (n-1) меньше сопротивления исходного амперметра.

где ρ – удельное сопротивление материала шунта,

L - длина проводника

S = / 4 – площадь поперечного сечения проводника, из которого изготовлен шунт

d – диаметр проволоки

Обычно шунты изготавливают из манганина, имеющего большое удельное сопротивление и малый термический коэффициент сопротивления.

Измерение напряжений

Для измерения напряжений в цепи применяются вольтметры, которые включаются в цепь параллельно (к тем точкам цепи, между которыми измеряется напряжение). Вольтметр должен иметь очень высокое внутреннее сопротивление, чтобы не влиять заметно на режим исследуемой цепи. Измерение напряжения производится вольтметром. Здесь также возможны четыре различных схемы подключения прибора (рис.3).

В этих схемах также используются методы расширения пределов измерения напряжения (вторая и четвертая схемы рис.3б, 3г), для расширения предела измерения вольтметра последовательно с ним включается добавочное сопротивление R 0 (рис.4).

По закону Ома:

или (7)

Чтоб измерять электрическую величину используют технические средства, которые имеют определенные метрологические характеристики. Их называют средствами измерения.

Измерительные установки и приборы, меры, измерительные преобразователи – это все относится к средствам измерения.

Для воспроизведения заданного значения физической величины используют меры.

Меры электрических величин – индуктивность, ЭДС, электрическое сопротивление, электрической емкость и т.д. Образцовыми называют меры высшего класса, по ним сверяют приборы и проводят градуировку шкал устройств.

Устройства, которые вырабатывают электрический сигнал в форме удобной для обработки, передачи, дальнейшего преобразования или хранения, но не поддающиеся непосредственному восприятию называют измерительными преобразователями. Для преобразования электрических величин в электрические относят: делители напряжения, шунты и т.д. Не электрических в электрические (датчики давления, энкодеры).

Если форма сигналов доступна для наблюдения – это измерительные приборы (вольтметры, амперметры и т.д.).

Совокупность измерительных приборов и преобразователей, мер, которые располагаются в одном месте и генерирует при измерении форму сигнала, удобную для наблюдению именуют измерительной установкой.

Все выше перечисленные средства можно рассортировать по следующим признакам: по способу регистрации и представления информации, ее виду и методу измерения.

По виду получаемой информации:

  • Электрические (мощность, ток и т.д.);
  • Не электрические (давление, скорость);

По методу измерения:

  • Сравнение (компенсаторы, измерительные мосты);
  • Непосредственная оценка (ваттметр, вольтметр);

По способу представления:

  • Цифровые;
  • Аналоговые (электронные или электромеханические);

Электроизмерительные приборы характеризуют такими основными показателями как: чувствительность, время установления показаний, надежность, погрешность, вариации показаний.

Самая большая разность показаний одного и того же устройства при одном и том же показании измеряемой величины называют вариацией показаний. Основная причина ее появления это трения в подвижных частях устройств.

Приращение перемещения указателя ∆а, относящееся к приращению измеряемой величины ∆х величают как чувствительность прибора S:

Если шкала устройства равномерна, то формула будет иметь вид:

Постоянная или цена деления прибора – обратная величина чувствительности С:

Равна она числу измеряемой величины на одно деление шкалы.

Потребляемая устройством из цепи мощность изменяет режим работы цепи. Это увеличивает вероятность появления погрешностей при измерении. Отсюда делаем вывод: чем меньше мощность, потребляемая из цепи, тем точнее прибор.

Время, за которое на дисплее (если приборы цифровые) или шкале (аналоговые), установится значение измеряемой величины после начала измерения – время установления показаний. Для аналоговых стрелочных устройств не должно превышать 4 секунды.

Сохранение заданных характеристик, точность показаний при установленных условиях работы и в течении заданного промежутка времени называют надежностью. Еще она характеризуется как среднее время исправной работы устройства.

Можно сделать вывод что при выборе измерительных устройств необходимо учитывать множество факторов, для корректной работы данных средств. Например, такие средства измерения как трансформаторы тока активно используются при измерении токов силовых линий, и не корректный выбор данных средств измерения может привести к авариям на линиях, вывода из строя дорогостоящего оборудования и остановки производства или отключением от питания целых городов.

Ниже вы можете посмотреть видео об основах метрологии и измерениях различных величин.

Современные технические устройства представляют собой совокупность большого числа так называемых «комплектующих изделий», объединенных электрическими, электронными, оптоэлектронными, механическими связями в узлы, блоки, системы, комплексы для решения тех или иных задач. Электронные автоматизированные системы управления и другие устройства могут включать в себя тысячи, десятки и даже сотни тысяч комплектующих изделий. При этом изменения параметров (свойств) одного или нескольких изделий влияют на качество функционирования других взаимодействующих, присоединенных изделий. Любое изделие имеет, к сожалению, не безграничный ресурс и срок службы. Его параметры с течением времени, раньше или позже, начинают изменяться постепенно, а иногда под влиянием внешних воздействий и скоротечно.

Наличие связей между элементами вызывает соответствующее изменение какого-то общего параметра совокупности соединенных комплектующих изделий. При некотором уровне изменения одного или нескольких параметров узел (блок, система, комплекс) теряет свою работоспособность. Чтобы предотвратить потерю работоспособности или восстановить утраченное качество технического устройства, необходимо количественно оценить его основные параметры или параметры его блоков, узлов, даже отдельных комплектующих изделий.

Параметры любых технических устройств, режимы их работы представляются наборами числовых значений совокупности физических величин (электрических, линейно-угловых, тепловых, оптических, акустических и др.). Значения физических величин в данный момент работы технического устройства объективно существуют, но неизвестны, если их не измерить. Следовательно, определение неизвестных числовых значений физических величин и является целью измерений.

Правильность определения значения измеряемой физической величины зависит от качества применяемых средств измерений, являющихся также техническими устройствами, способными измерить ту или иную физическую величину с заранее известной точностью.

В процессе эксплуатации радиоэлектронных комплексов, автоматизированных систем управления для поддержания работоспособности приходится периодически последовательно или одновременно измерять большое число физических величин со значительными пределами изменения в широком диапазоне частот. Прежде всего, практически в каждом сеансе работы сложного технического устройства необходимо контролировать соответствие значений физических величин установленным значениям или пределам (допускам). Подобный контроль параметров и характеристик для определения возможности нормального функционирования технических устройств, связанный с нахождением значений физических величин, называется измерительным. В ряде случаев нет необходимости определять (с заданной точностью) числовые значения физических величин: часто требуется фиксировать только наличие какого-либо сигнала или нахождение параметра в широком поле допуска (не меньше, не больше и т. д.). В таких случаях производится качественная оценка параметров технического устройства, а процесс оценки называется качественным контролем или просто контролем. При контроле часто применяют цветовую индикацию (цвет сигнала указывает оператору на соответствие параметра определенной границе). В ряде случаев для контроля применяют так называемые индикаторы - средства измерений с низкими точностными характеристиками.

Принципиальные различия между измерительным контролем и качественным заключается в следующем: в первом случае измеряемая физическая величина оценивается с заданной точностью и в широком диапазоне ее возможных значений (диапазоне измерений). Любое из полученных при измерении значений физической величины всегда вполне определенно и может быть сопоставлено с заданным значением; во втором случае оцениваемая физическая величина может принимать любое значение (в широком диапазоне ее возможных значений), которое является неопределенным, за исключением одного (или двух), когда значение физической величины становится равным верхней (нижней) границе поля допуска (этот момент сопровождается световым или другим сигналом). Если в качестве индикатора при контроле применяют средство измерений, то соответствующие значения физической величины получают вполне определенными, но без гарантии точности результата контроля, так как индикаторы не подлежат периодической поверке.

Методы измерения токов и напряжений зависят от величины и вида этих электрических величин.

Для определения малых постоянных токов можно использовать как прямые, так и косвенные измерения. В первом случае ток можно измерять зеркальными гальванометрами и стрелочными магнитоэлектрическими приборами. Наименьший ток, который можно измерить зеркальным гальванометром, равен приблизительно 10" п А, а стрелочный магнитоэлектрический прибор позволяет измерить величину 10 6 А.

Косвенно неизвестный ток определяют по падению напряжения на высокоомном резисторе или по заряду, накопленному конденсатором. В качестве приборов используются баллистические гальванометры с минимально измеряемым током 10‘ 12 А и электрометры с минимально измеряемым током 10 17 А.

Электрометрами называют приборы высокой чувствительности по напряжению с входным сопротивлением до 10 15 Ом. Механизм электрометра представляет собой разновидность механизма электростатического прибора, который имеет один подвижный и несколько неподвижных электродов, находящихся под разными потенциалами.

Квадрантный электрометр представлен на рис. 2.1.

Рис. 2.1.

Устройство имеет подвижную часть 1 с зеркалом 2, которая закреплена на подвесе 3 и расположена внутри четырех неподвижных электродов 4, называемых квадрантами. Измеряемое напряжение Их включается между подвижной частью и общей точкой, а на квадранты от вспомогательных источников подаются постоянные напряжения U, значения которых равны, но противоположны по знаку. Отклонение подвижной части в этом случае равно

где С - емкость между подвижным электродом и двумя соединенными между собой квадрантами, М- удельный противодействующий момент, зависящий от конструкции подвеса. Отклонение подвижной части, а следовательно, и чувствительность электрометра пропорциональны вспомогательному напряжению U, значение которого обычно выбирают в пределах до 200 В. Чувствительность квадрантных электрометров при вспомогательном напряжении 200 В достигает 10 4 мм/В.

К средним токам и напряжениям условно можно отнести токи в диапазоне от 10 мА до 100 А и напряжения от 10 мВ до

600 В. Для измерения средних постоянных токов можно использовать прямые и косвенные измерения. Для измерения напряжений используют только прямые измерения.

При прямых измерениях ток и напряжение можно измерять приборами магнитоэлектрической, электромагнитной, электродинамической и ферродинамической систем, а также электронными и цифровыми приборами Напряжение можно измерять приборами электростатической системы и потенциометрами постоянного тока.

Наиболее точные приборы магнитоэлектрической системы, предназначенные для измерения средних токов и напряжений, имеют класс точности 0,1.

В тех случаях, когда необходимо измерить напряжение или ток с высокой точностью, используют потенциометры постоянного тока, цифровые вольтметры и амперметры. Класс точности наиболее точных потенциометров 0,001, цифровых вольтметров - 0,002, а цифровых амперметров - 0,02. Измерение тока при помощи потенциометра проводят косвенным путем, при этом искомый ток определяют по падению напряжения на образцовом резисторе. Преимуществом потенциометров и цифровых приборов является малое потребление мощности.

Измерение больших токов и напряжений проводят с помощью аттенюаторов. Шунтирование магнитоэлектрических приборов дает возможность измерять постоянные токи до нескольких тысяч ампер. Обычно для измерения больших токов часто используют несколько шунтов, соединенных параллельно. Несколько одинаковых шунтов подключают в разрыв шины, а проводники от потенциальных зажимов всех шунтов подводят к одному и тому же прибору.

Электростатические вольтметры позволяют измерять напряжения до 300 кВ. Для определения более высоких значений напряжения используют измерительные трансформаторы.

Для оценки переменных токов и напряжений используют понятия действующего или среднеквадратического значения, амплитудного или максимального значения и средневыпрям- ленного значения.

Действующее, амплитудное и средневыпрямленное значения связаны между собой через коэффициент формы кривой и коэффициент амплитуды.

Коэффициент формы сигнала равен

где U a - действующее значение сигнала, U cp - средневыпрямленное значение сигнала.

Коэффициент амплитуды сигнала определяется как

где - амплитудное значение сигнала.

Значения этих коэффициентов зависят от формы кривой напряжения или тока. Для синусоиды = 1,11 и к а = л/2 = 1,41. Отсюда, измерив одно из трех указанных выше значений измеряемой величины, можно определить остальные.

При несинусоидальном сигнале чем ближе он будет к прямоугольной форме, тем ближе к единице будут коэффициенты кф и к и. Для узкой и острой формы кривой измеряемой величины эти коэффициенты будут иметь большее значение.

Приборы электродинамической, ферродинамической, электромагнитной, электростатической и термоэлектрической систем реагируют на действующее значение измеряемой величины. Приборы выпрямительной системы реагируют на средневыпрямленное значение измеряемой величины. Приборы электронной системы, как аналоговые, так и цифровые, в зависимости от типа измерительного преобразователя переменного напряжения в постоянное, могут реагировать на действующее, средневыпрямленное или амплитудное значение измеряемой величины.

Вольтметры и амперметры всех систем обычно градуируют в действующих значениях при синусоидальной форме кривой тока. При несинусоидальной форме кривой у приборов, реагирующих на средневыпрямленное или амплитудное значение тока или напряжения, будет возникать дополнительная погрешность, так как коэффициенты кф и к а при несинусоидальной форме кривой отличаются от соответствующих значений для синусоиды.

Поделитесь с друзьями или сохраните для себя:

Загрузка...