Позиционные и непозиционные системы счисления. Основы систем счисления Какие системы счисления называется непозиционные

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая бóльшее число предметов, объединялась в понятии «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки. В древнем Новгороде использовалась славянская система, где применялись буквы славянского алфавита; при изображении чисел над ними ставился знак ~ (титло).

Древние римляне пользовались нумерацией, сохраняющейся до настоящего времени под именем «римской нумерации», в которой числа изображаются буквами латинского алфавита. Сейчас ею пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д. В позднейшем своем виде римские цифры выглядят так:

I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явственно сказываются следы пятеричной системы счисления. Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если бóльшая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед бóльшей (в этом случае она не может повторяться), то меньшая вычитается из бóльшей). Например, VI = 6, т.е. 5 + 1, IV = 4, т.е. 5 – 1, XL = 40, т е. 50 – 10, LX = 60, т.е. 50 + 10. Подряд одна и та же цифра ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так:

I, II, III, IV, V, VI, VII, VIII. IX, X, XI, XII.

Другие же числа записываются, например, как:

XXVIII = 28; ХХХIХ = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Тем не менее, римская нумерация преобладала в Италии до 13 в., а в других странах Западной Европы – до 16 в.

В славянской системе нумерации для записи чисел использовались все буквы алфавита, правда, с некоторым нарушением алфавитного порядка. Различные буквы означали различное количество единиц, десятков и сотен. Например, число 231 записывалось в виде ~ СЛА (C – 200, Л – 30, А – 1).

Этим системам свойственны два недостатка, которые привели к их вытеснению другими: необходимость большого числа различных знаков, особенно для изображения больших чисел, и, что еще важнее неудобство выполнения арифметических операций.

Более удобной и общепринятой и наиболее распространенной является десятичная система счисления, которая была изобретена в Индии, заимствована там арабами и затем через некоторое время пришла в Европу. В десятичной системе счисления основанием является число 10.

Существовали системы исчисления и с другими основаниями. В Древнем Вавилоне, например, применялась шестидесятеричная система счисления. Остатки ее мы находим в сохранившемся до сих пор делении часа или градуса на 60 минут, а минуты – на 60 секунд.

Широкое распространение имела в древности и двенадцатеричная система, происхождение которой, вероятно, связано, как и десятичной системы, со счетом на пальцах: за единицу счета принимались фаланги (отдельные суставы) четырех пальцев одной руки, которые при счете перебирались большим пальцем той же руки. Остатки этой системы счисления сохранились и до наших дней и в устной речи, и в обычаях. Хорошо известно, например, название единицы второго разряда – числа 12 – «дюжина». Сохранился обычай считать многие предметы не десятками, а дюжинами, например, столовые приборы в сервизе или стулья в мебельном гарнитуре. Название единицы третьего разряда в двенадцатеричной системе – гросс – встречается теперь редко, но в торговой практике начала столетия оно еще бытовало. Например, в написанном в 1928 стихотворении Плюшкин В.В.Маяковский, высмеивая людей, скупающих все подряд, писал: «...укупил двенадцать гроссов дирижерских палочек». У ряда африканских племен и в Древнем Китае была употребительна пятеричная система счисления. В Центральной Америке (у древних ацтеков и майя) и среди населявших Западную Европу древних кельтов была распространена двадцатеричная система. Все они также связаны со счетом на пальцах.

Самой молодой системой счисления по праву можно считать двоичную. Эта система обладает рядом качеств, делающей ее очень выгодной для использования в вычислительных машинах и в современных компьютерах.

Позиционные и непозиционные системы счисления.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки.

Однако наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.

Различие между позиционой и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бóльшая цифра соответствует бóльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Позиционные системы счисления.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы – это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p , как x = a n ·p n +a n – 1·p n –1 + a p 1 + a p 0, где a n ...a 0 – цифры в представлении данного числа. Так, например,

1035 10 =1·10 3 + 0·10 2 + 3·10 1 + 5·10 0 ;

1010 2 = 1·2 3 + 0·2 2 + 1·2 1 + 0·2 0 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же не используются другие системы счисления? В основном, потому, что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Перевод чисел из одной системы счисления в другую.

Наиболее часто встречающиеся системы счисления – это двоичная, шестнадцатеричная и десятичная. Как же связаны между собой представления числа в различных системах счисления? Есть различные способы перевода чисел из одной системы счисления в другую на конкретных примерах.

Пусть нужно перевести число 567 из десятичной в двоичную систему. Сначала определяется максимальная степень двойки, такая, чтобы два в этой степени было меньше или равно исходному числу. В данном случае это 9, т.к. 2 9 = 512, а 2 10 = 1024, что больше начального числа. Таким образом получается число разрядов результата, оно равно 9 + 1 = 10, поэтому результат будет иметь вид 1ххххххххх , где вместо х могут стоять любые двоичные цифры. Вторая цифра результата находится так – двойка возводится в степень 9 и вычитается из исходного числа: 567 – 2 9 = 55. Остаток сравнивается с числом 2 8 = 256. Так как 55 меньше 256, то девятый разряд – нуль, т.е. результат имеет вид 10хххххххх . Рассмотрим восьмой разряд. Так как 2 7 = 128 > 55, то и он будет нулевым.

Седьмой разряд также оказывается нулевым. Искомая двоичная запись числа принимает вид 1000хххххх . 2 5 = 32 ххххх). Для остатка 55 – 32 = 23 справедливо неравенство 2 4 = 16

567 = 1·2 9 + 0·2 8 + 0·2 7 + 0·2 6 + 1·2 5 + 1·2 4 + 0·2 3 + 1·2 2 + 1·2 1 + 1·2 0

При другом способе перевода чисел используется операция деления в столбик. Если взять то же число 567 и разделить его на 2, получается частное 283 и остаток 1. Та же операция производится и с числом 283. Частное – 141, остаток – 1. Опять полученное частное делится на 2 и так до тех пор, пока частное не станет меньше делителя. Теперь, чтобы получить число в двоичной системе счисления, достаточно записать последнее частное, т.е. 1, и приписать к нему в обратном порядке все полученные в процессе деления остатки.

Результат, естественно, не изменился: 567 в двоичной системе счисления записывается как 1 000 110 111.

Эти два способа применимы при переводе числа из десятичной системы в систему с любым основанием. Например, при переводе числа 567 в систему счисления с основанием 16 число сначала разлагается по степеням основания. Искомое число состоит из трех цифр, т.к. 16 2 = 256 хх, где вместо х могут стоять любые шестнадцатеричные цифры. Остается распределить по следующим разрядам число 55 (567 – 512). 3·16 = 48

Второй способ состоит в последовательном делении в столбик, с единственным отличием в том, что делить надо не на 2, а на 16, и процесс деления заканчивается, когда частное становится строго меньше 16.

Конечно, для записи числа в шестнадцатеричной системе счисления, необходимо заменить 10 на A, 11 на B и так далее.

Операция перевода в десятичную систему выглядит гораздо проще, так как любое десятичное число можно представить в виде x = a p n + a p n –1 +... + a n –1·p 1 + a n ·p 0, где a 0 ... a n – это цифры данного числа в системе счисления с основанием p .

Например,так можно перевести число 4A3F в десятичную систему. По определению, 4A3F= 4·16 3 + A·16 2 + 3·16 + F. При замене A на 10, а F на 15, получается 4·16 3 + 10·16 2 + 3·16 + 15= 19007.

Проще всего переводить числа из двоичной системы в системы с основанием, равным степеням двойки (8 и 16), и наоборот. Для того чтобы целое двоичное число записать в системе счисления с основанием 2 n , нужно данное двоичное число разбить справа налево на группы по n -цифр в каждой; если в последней левой группе окажется меньше n разрядов, то дополнить ее нулями до нужного числа разрядов; рассмотреть каждую группу, как n -разрядное двоичное число, и заменить ее соответствующей цифрой в системе счисления с основанием 2 n .

Таблица 1. Двоично-шестнадцатеричная таблица
Таблица 1. ДВОИЧНО-ШЕСТНАДЦАТЕРИЧНАЯ ТАБЛИЦА
2-ная 0000 0001 0010 0011 0100 0101 0110 0111
16-ная 0 1 2 3 4 5 6 7
2-ная 1000 1001 1010 1011 1100 1101 1110 1111
16-ная 8 9 A B C D E F

Известный французский астроном, математик и физик Пьер Симон Лаплас (1749–1827) писал об историческом развитии систем счисления, что «Мысль выражать все числа девятью знаками, придавая им, кроме значения по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этому методу, мы видим на примере величайших гениев греческой учености Архимеда и Аполлония, от которых эта мысль осталась скрытой.»

Сравнение десятичной системы исчисления с иными позиционными системами позволило математикам и инженерам-конструкторам раскрыть удивительные возможности современных недесятичных систем счисления, обеспечившие развитие компьютерной техники.

Анна Чугайнова

В вопросах организации обработки информации с помощью ЭВМ важное место занимают системы счисления, формы представления данных и специальное кодирование чисел.

Совокупность приемов наименования и записи чисел называется счислением . Под системой счисления понимается способ представления любого числа с помощью ограниченного алфавита символов, называемых цифрами.

Все системы счисления можно разделить на два класса: позиционные и непозиционные .

В непозиционных системах счисления каждое число обозначается соответствующей совокупностью символов. В непозиционных системах счисления значение символа не зависит от того места, которое он занимает в числе. Примером непозиционной системы счисления является римская система счисления . В этой системе используется 7 символов, которые соответствуют следующим величинам:

I (1), V(5), X(10), l(50), c(100), d(500), m(1000).

В римской нумерации явственно сказываются следы пятиричной системы счисления. В языке же римлян (латинском) никаких следов пятиричной системы нет. Значит, эти цифры были заимствованы римлянами у другого народа (предположительно у этрусков).

Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если большая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед большей (в этом случае она не может повторяться), то меньшая вычитается из большей. Подряд одна и та же цифра ставится не более трех раз. Например, III(3), LIX(59), DLV(555), MCMXCVIII (1998).

Недостатком непозиционных систем счисления является отсутствие формальных правил записи чисел и арифметических действий над ними. В вычислительной технике непозиционные системы не применяются.

В древнем Вавилоне примерно за 40 веков до нашего времени создалась поместная (позиционная) нумерация, т.е. такой способ изображения чисел, при котором одна и та же цифра может обозначать разные числа, смотря по месту, занимаемому этой цифрой. Наша теперешняя нумерация – тоже поместная, однако в вавилонской поместной нумерации ту роль, которую играет у нас число 10, играло число 60, и потому эту нумерацию называют шестидесятиричной.

Шестидесятиричная запись целых чисел не получила распространения за пределами ассиро-вавилонского царства, но шестидесятиричные дроби проникли далеко за эти пределы: в страны Среднего Востока, Средней Азии, в Северную Африку и Западную Европу. Они широко применялись, особенно в астрономии, вплоть до изобретения десятичных дробей. Следы шестидесятиричных дробей сохраняются и поныне в делении углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд.

Позиционные системы счисления обладают большими преимуществами в наглядности представления чисел и в простоте выполнения арифметических операций. В позиционной системе счисления значение числа определяется не только набором входящих в него цифр, но и их местом (позицией) в последовательности цифр, изображающих это число. Примером позиционной системой счисления является десятичная система. Помимо десятичной существуют другие позиционные системы счисления, для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга символов. Число таких символов в позиционной системе счисления называется основанием системы счисления и обозначается буквой q . В десятичной системе используется десять символов (цифр): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, и основанием системы является число 10. В таблице 3.1 приведены наименования некоторых позиционных систем счисления и перечень цифр, из которых образуются в них числа.

Таблица 3.1.

Основание

Система счисления

Символы

Двоичная

Троичная

Восьмиричная

0, 1, 2, 3, 4, 5, 6, 7

Десятичная

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Шестнадцатиричная

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Особое место среди позиционных систем счисления занимают системы со степенными весами разрядов, в которых веса смежных позиций цифр (разрядов) отличаются по величине в постоянное количество раз, равное основанию q системы счисления.

В общем случае в такой позиционной системе счисления с основанием q любое число X может быть представлено в виде полинома разложения (суммы произведений коэффициентов на степени основания системы счисления):

здесь q – основание системы счисления;
– запись числа в системе счисления по основаниюq ; – целые числа, меньшиеq ; n – число разрядов в целой части числа; m – число разрядов в дробной части числа.

Таким образом, значение каждого знака в числе зависит от позиции, которую занимает символ в записи числа. Именно поэтому такие системы счисления называют позиционными. Например,

В информатике применяют позиционные системы счисления с недесятичным основанием: двоичную, восьмиричную и шестнадцатиричную, т.е. системы счисления с основанием
, гдеk = 1, 3, 4.

В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем – это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

Наиболее удобной для построения ЭВМ оказалась двоичная система счисления, т.е. система счисления, в которой используются только две цифры: 0 и 1, т.к. с технической точки зрения создать устройство с двумя состояниями проще, также упрощается различение этих состояний.

Для представления этих состояний в цифровых системах достаточно иметь электронные схемы, которые могут принимать два состояния, четко различающиеся значением какой-либо электрической величины – потенциала или тока. Одному из значений этой величины соответствует цифра 0, другому – 1. Относительная простота создания электронных схем с двумя электрическими состояниями и привела к тому, что двоичное представление чисел доминирует в современной цифровой технике. При этом 0 обычно представляется низким уровнем потенциала, а 1 – высоким уровнем. Такой способ представления называется положительной логикой.

Т.В. Сарапулова, И.Е. Трофимов

НЕПОЗИЦИОННЫЕ И СМЕШАННЫЕ
СИСТЕМЫ СЧИСЛЕНИЯ

направления 230700.62 «Прикладная информатика» в качестве методических указаний для самостоятельной работы
по дисциплине «Информационные системы и технологии»

Кемерово 2012


Рецензенты:

1. Прокопенко Евгения Викторовна, кандидат физико-математических наук, доцент кафедры прикладных информационных технологий.

2. Соколов Игорь Александрович, кандидат технических наук, доцент, заведующий кафедрой прикладных информационных технологий, председатель УМК направления 230700.62 «Прикладная информатика».

Сарапулова Татьяна Викторовна, Трофимов Иван Евгеньевич. Непозиционные и смешанные системы счисления: метод. указания для самостоятельной работы по дисциплине «Информационные системы и технологии» [электронный ресурс] : для студентов направления подготовки бакалавров 230700.62 «Прикладная информатика»/ Т. В. Сарапулова, И. Е. Трофимов. – Электрон. дан. – Кемерово: КузГТУ, 2012. – 1 электрон. опт. диск (CD-ROM) ; зв. ; цв. ; 12 см. – Систем. требования: ОЗУ 64 Мб; Windows XP/Vista/7 ; (CD-ROM-дисковод). – Загл. с экрана.

Методические указания предназначены для самостоятельного изучения непозиционных и смешанных систем счисления. В состав указаний входят теоретическая база и контрольные вопросы.

Ó Сарапулова Т.В, Трофимов И.Е.


ВВЕДЕНИЕ.. 4

1. НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 5

1.1. Римская система счисления. 6

1.2. Система остаточных классов (СОК) 6

1.3. Система счисления Штерна-Броко. 8

2. СМЕШАННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 9

2.1. Система счисления майя. 10

2.2. Факториальная система счисления. 10

2.3. Фибоначчиева система счисления. 11


Целью данной самостоятельной работы является изучение непозиционных и смешанных систем счисления.

ВВЕДЕНИЕ

Одним из обязательных требований к специалисту в области информационных технологий является знание принципов работы с числами. На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая большее число предметов, объединялась в понятие «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки.

Проведём границу между числом и цифрой. Число – это некоторая абстрактная сущность для описания количества. Цифры – это знаки, используемые для записи чисел. Цифры бывают разные, самыми распространёнными являются арабские цифры, представляемые известными нам знаками от нуля (0) до девяти (9); менее распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак, запомним: число это некая абстрактная мера количества , цифра это знак (рисунок) для записи числа .

Всё множество способов записи чисел с помощью цифр можно разделить на три части:

1. позиционные системы счисления;

2. смешанные системы счисления;

3. непозиционные системы счисления.

Денежные знаки – это яркий пример смешанной системы счисления. Сейчас в России используются монеты и купюры следующих номиналов: 1 коп., 5 коп., 10 коп., 50 коп., 1 руб., 2 руб., 5 руб., 10 руб., 50 руб., 100 руб., 500 руб., 1000 руб. и 5000 руб. Чтобы получить некоторую сумму в рублях, нам нужно использовать определенное количество денежных знаков различного достоинства. Предположим, что мы покупаем пылесос, который стоит 6379 руб. Чтобы расплатиться, нам потребуется шесть купюр по тысяче рублей, три купюры по сто рублей, одна пятидесятирублёвая купюра, две десятки, одна пятирублёвая монета и две монеты по два рубля. Если мы запишем количество купюр или монет начиная с 1000 руб. и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число, представленное в смешанной системе счисления; в нашем случае – 603121200000.

В непозиционной же системе счисления величина числа не зависит от положения цифры в представлении числа. Ярким примером непозиционной системы счисления является римская система. Не смотря на свой почтенный возраст, данная система до сих пор используется, хотя и не является общеупотребимой.

НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр.

С глубокой древности люди повсеместно использовали непозиционные системы счисления. Для подсчета животных, населения, запасов использовались различные буквы, пиктограммы и прочие геометрические фигуры. Со временем непозиционные системы стали менее популярны и в современном мире мы встречаем типичного представителя непозиционных систем – римскую систему счисления, уже скорее как экзотическое письмо, нежели реально действующую систему. Причиной отказа от непозиционных систем счисления стало появление позиционных систем, давших возможность использовать значительно меньшие цифровые алфавиты для обозначения даже очень больших чисел и, что еще важнее, обеспечивающих простое выполнение арифметических операций над числами.

Римская система счисления

Каноническим примером фактически непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

I обозначает 1, V – 5, X – 10, L – 50, C – 100, D – 500, M – 1000.

Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе.

Заметьте, что символ нуля в данной системе счисления, как и в других непозиционных системах, отсутствует за ненадобностью.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явно прослеживаются следы пятеричной системы счисления.

На самом деле, римская система не является полностью непозиционной , так как меньшая цифра, идущая перед большей, вычитается из неё, например:

VI = 6, т.е. 5 + 1, в то время как IV = 4, т.е. 5 – 1;

XL = 40, т.е. 50 – 10, в то время как LX = 60, т.е. 50 + 10.

Подряд одна и та же цифра в римской системе ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так: I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII.

Другие же числа записываются, например, как: XXVIII = 28; XXXIX = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Задавшись вопросом о том, сколько же чисел можно записать в римской системе, мы быстро обнаружим, что их диапазон простирается от 1 (I) до 3999 (MMMCMXCIX). Столь узкий диапазон чисел серьезно ограничивает применение системы в современной жизни, где счет идет на миллионы.

Сейчас римской системой счисления пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д.


Похожая информация.


Поделитесь с друзьями или сохраните для себя:

Загрузка...